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  Abstract  

 
 Integral transform method have proved to be the great 

importance in solving boundary value problems of 
mathematical physics and partial differential equation.We had 
defined classical Laplace-Weierstrass transform in generalized 
sense. In this paper we have proved initial and final value 
theorem for Laplace-Weierstrass transform. The results are 
used to solve boundary value problems of partial differential 
equation and in mathematical physics. 
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1. Introduction  

In mathematical analysis, the Initial value theorem is a theorem used to relate frequency 
domain expression to the time domain behavior as time approaches to zero. And the Final value 
theorem is one of several similar theorems used to relate frequency domain expression to the 
time domain behavior as time approaches infinity. The Initial and Final value theorems are 

obtained as the complex variable of the transform approaches 0 or in absolute value inside 
a wedge region in the right half plane. By an ‘Initial (Final) value theorem, we mean a theorem 
that relates the Initial (Final) value of a distribution to the Final (Initial) value of the transform. 
The Laplace transform is denoted and defined by 

      1.1, stetftfL 
 

The Weierstrass transform is denoted and defined by 

      2.1,
4
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The kernel  1,sK  as a function of  is a member of  zwW , if and only if zsw Re , 

also if t  is fixed with 10  t , then  tsK , as a function of   is a member of  zwW , for 

every fixed 's and every w  and z . Furthermore, conventional differentiation is a 

continuous linear mapping of  zwW ,  into itself; generalized differentiation is a continuous 

linear mapping of  zwW ,'  into itself. Thus, the Laplace-Weierstrass transform is denoted and 

defined as 

      3.1,,
4

1
, 4
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st

etftfLW
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          In this paper, we shall establish Initial and Final value theorems for the generalized 
Laplace-Weierstrass transform. In section 2, we have given Initial value theorem for the 
generalized Laplace-Weierstrass transform .Final value theorem for generalized Laplace-
Weierstrass transform is proved in section 3. The setting for these Initial and Final value 
theorems is motivated by the Initial and Final value results of Doetsch [2]. Initial and Final value 
theorems for various transform are introduced in [3, 4, 5]. 
Our notations and terminology are the same as used in Zemanian [7]. 

 
2. Initial value theorem for Laplace-Weierstrass transform 

Here we take the function  ,tf  that is absolutely integrable over  t0 and 0 . We 

shall also impose that  ,tf  is a right sided and locally integrable function, which satisfisfies the 

following conditions:- 

i)  ,tf =0, for  0,0 Tt  

ii) There exists a real number s such that   4

2

,





st

etf is absolutely integrable over

 t0 and 0 . 

2.1 Theorem:- 

For a locally integrable function  ,tf  satisfying above conditions with 0T and existence of 

any complex constant B and a real numbers m and n such that, 

1) mi    

1) nii  
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lim)

0

0
 

then,    BtfLWs m

s



,lim 1

 

Proof: We know by Zemanian [7] pp. 243 and Lokenath-Debnath [1] pp.136, 

i) For 1m  and 0s  
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Hence,  
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By Widder [6]  pp. 181, for any positive we can find a constant M such that,  
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Where the right hand side of this inequality approaches to zero as s becomes infinite. Therefore, 
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Since T and  are arbitrary, 
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   


BtfLWsm

s
,lim 1

 
  Btf

t

nm

nm

n

t













,2

1
12

lim

0

0

 

From which the result follows.

 

2.2 Lemma 

     If   ,,, baLWytf  with its support in  tt f
and  yy f

where 0ft and 0fy

then   42
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 , where H is sufficiently large constant. 

      Proof:- Let  ytg ,  be a smooth function on  t0 and  y0 such that   1, ytg on 

 ,ft and  ,fy and also   0, ytg on  T,0  and  Y,0  where 
ftT  and 

fyY  . As a 

distribution of slow growth satisfies a boundedness property of distribution, there exists a positive 
constant K  and a non-negative integer  such that, 
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Where  ytg qp , gives thp derivative of  ytg , with respect to ''t and thq derivative of  ytg , with 

respect to '' y  
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3.  Final value theorem for Laplace-Weierstrass transform 

For a locally integrable function  ,tf  satisfying above conditions with 0T and existence of 

any complex constant B and a real numbers m and n such that, 

1) mi    

1) nii  
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Proof: We proceed as in initial value theorem for Laplace-Weierstrass transform to obtain, 
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Therefore,  
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Since T and  are arbitrary, 
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4. Conclusion  

This paper provides Initial and Final value theorems which can be used to solve boundary value problem. 
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